Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons

نویسندگان

  • Zhongfeng Wang
  • Li Kai
  • Michelle Day
  • Jennifer Ronesi
  • Henry H. Yin
  • Jun Ding
  • Tatiana Tkatch
  • David M. Lovinger
  • D. James Surmeier
چکیده

Long-term depression (LTD) of the synapse formed between cortical pyramidal neurons and striatal medium spiny neurons is central to many theories of motor plasticity and associative learning. The induction of LTD at this synapse is thought to depend upon D(2) dopamine receptors localized in the postsynaptic membrane. If this were true, LTD should be inducible in neurons from only one of the two projection systems of the striatum. Using transgenic mice in which neurons that contribute to these two systems are labeled, we show that this is not the case. Rather, in both cell types, the D(2) receptor dependence of LTD induction reflects the need to lower M(1) muscarinic receptor activity-a goal accomplished by D(2) receptors on cholinergic interneurons. In addition to reconciling discordant tracts of the striatal literature, these findings point to cholinergic interneurons as key mediators of dopamine-dependent striatal plasticity and learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been ide...

متن کامل

Spike-Timing Dependent Plasticity in the Striatum

The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a select...

متن کامل

M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia

A balanced interaction between dopaminergic and cholinergic signaling in the striatum is critical to goal-directed behavior. But how this interaction modulates corticostriatal synaptic plasticity underlying learned actions remains unclear--particularly in direct-pathway spiny projection neurons (dSPNs). Our studies show that in dSPNs, endogenous cholinergic signaling through M4 muscarinic recep...

متن کامل

Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice123

Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating cort...

متن کامل

Nigrostriatal Dopaminergic Deficits and Hypokinesia Caused by Inactivation of the Familial Parkinsonism-Linked Gene DJ-1

The manifestations of Parkinson's disease are caused by reduced dopaminergic innervation of the striatum. Loss-of-function mutations in the DJ-1 gene cause early-onset familial parkinsonism. To investigate a possible role for DJ-1 in the dopaminergic system, we generated a mouse model bearing a germline disruption of DJ-1. Although DJ-1(-/-) mice had normal numbers of dopaminergic neurons in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006